
Performance Optimisation Part 2
by Bob Swart

In the last issue, we started a
small application which used two

components: TFileListBox and
TDirectoryOutline. We enhanced
the TDirectoryOutline compo-
nent’s performance by modifying
the VCL code in DIROUTLN.PAS
(remember that any enhance-
ments made in the ‘local’ version of
the TDirectoryOutline code and
.DCU file override the version in
COMPLIB.DCL). I called this feature
bottom-up efficiency, as it enables
us to write more efficient versions
of components, enhancing effi-
ciency by simply recompiling the
applications which use these
components!

This time, we’ll examine other
possible performance enhance-
ments and efficiency issues for
Delphi, starting with the new
Object Pascal features in Delphi.

Language Enhancements
The Object Pascal language used in
Delphi contains many helpful new
features for programmers who are
concerned with efficiency.

Virtual vs Dynamic
For starters, we now have two ways
to indicate whether or not a
method can be overruled in a
descendant class. We can declare
methods as either virtual or
dynamic. The difference is the algo-
rithm that is used to find the cor-
rect (polymorphic) method to use
at run-time.

If you declare a method as
virtual, the compiler will find the
correct method by walking the
virtual method table (VMT) of the
instance. If you declare a method
as dynamic, the compiler will use
another algorithm, which uses less
storage space, but is slower. So,
again we see here a trade-off
between size and speed and Delphi
offers us the chance to make our
own decisions about it! If you want
a small program, or need a faster
one, check your virtual and
dynamic routines.

Open Arrays
A very nice feature of Object Pascal
is the ability to use open arrays
when passing an array to a routine
where the routine does not know
beforehand exactly how many
elements are in the array. The
elements of the open array are
numbered from 0 (just like C/C++
and the PChar type). Using the High
function on an open array, we can
get the maximum index number.
This enables us to write one rou-
tine which is capable of accepting
arrays of several different lengths,
thereby reducing code size!
Consider for example the function
Min in Listing 1, which returns the
minimum value of an open array of
integers.

The function contains a possibly
fatal error: the open array is sup-
plied as value parameter to Min.
This not only costs a lot of time in
copying the open array to the
stack, it might also blow the stack!
A value open array is copied onto
the stack before the routine is
executed (including any stack
checking code) and since an open
array can be up to 64Kb in size (just
like the stack), this offers lots of
RunError(202) opportunities. So, I
urge you to always use Const or Var
when passing open arrays. They
not only save time, they also
prevent stack overflows!

Run Time Type Information
RTTI enables Delphi to identify
each instance of a class. This is
used, for example, by the Object

Inspector to display the properties
of a class instance. But we can use
RTTI to our own advantage, too,
using the two new keywords is and
as. Using is we can check whether
or not an instance is of a specific
class type, while as can be used to
do a RTTI-safe typecast (one that
will raise an exception if RTTI
identifies the cast as invalid):

if Sender is TButton then
 with (Sender as TButton) do
 ...

Note that we can omit the as and
use an untyped cast since the is
operator already identifies Sender
as being of type TButton. So, a faster
version of the the last line is:

with TButton(Sender) do ...

Exceptions
Delphi exceptions, including the
new keywords try, except, on ...
do and raise, offer a new way of
detecting and handling errors.
Many programmers, however, are
concerned about the efficiency of
exceptions compared to regular
error handling.

My timings have shown that the
use of exceptions has no significant
effect on the performance of a
certain piece of code, as long as the
regular (non-exception) path is
followed. Where an exception is
raised, I noticed some overhead.
But what the heck, I don’t mind
waiting just a little bit longer to get
an error message anyway.

program CrtApp;
uses WinCrt;
function Min(A: Array of Integer): Integer;
var i: Word;
begin
 Result := High(Integer);
 for i := Low(A) to High(A) do { note: Low(A) is always 0! }
 if A[i] < Result then Result := A[i]
end {Min};
begin
 writeln(Min([1]));
 writeln(Min([8,4,2,6,5,3,7,12]));
end.

➤ Listing 1

January 1996 The Delphi Magazine 47

This does mean, however, that
exceptions should not be used in
tight loops where the exception is
just part of the execution flow (like
reading a text file and raising an
‘end-of-line’ exception at the end of
each line). This kind of program-
ming will slow down your applica-
tion, since for each exception
which is raised an instance of
EException is created, your stack is
cleared and walked to the nearest
exception handler. For normal
error detection and handling
exceptions are just fine and often
make the code that much more
readable!

Finally
Measurements of the try ...
finally block which was also
introduced with Delphi exceptions
don’t indicate any significant
performance loss either. This,
combined with the fact that a try
... finally block is a very helpful
way to safeguard resources and
prevent any leakages, makes this
my preferred way of programming!

Assembly
As we saw with TDirectoryOutline,
an efficient algorithm or data struc-
ture can make a difference of an
order of magnitude. Furthermore,
new Delphi language features are
able to decrease code size or
increase speed and safety, al-
though the results are less
dramatic compared to algorithmic
improvements.

Every now and then, we’ll meet a
situation where this just isn’t
enough and we have to use assem-
bly language in one of these three
forms (check out The Pascal
Magazine Issue 7 for more details):
➣ BASM (Built-in ASseMbler).

This kind of assembler offers
almost anything you’d ever
need, while a lot of the fuss is
already taken care of. We can
simply insert assembly state-
ments between asm and end and
don’t have to worry about
setting up our own stack frame
for example.

➣ InLine macros. These macros
consist of hexadecimal (and so
almost unreadable) statements
which are substituted for their

‘call’. They offer a great oppor-
tunity for performance en-
hancements, but do increase
executable file size.

➣ External .ASM files. Finally, if
all else fails, you can step down
to an external .ASM file which
compiles to an .OBJ file, which
can be linked in with the
{$L file.OBJ} statement.

Code Size
Sometimes, we just need to mini-
mise code size or stack/heap
usage, especially if these resources
are low. While Delphi executables
are generally larger than compara-
ble Borland Pascal applications,
they are about the same size as
corresponding C++ applications
(of course, using Delphi the
application itself is much easier to
produce!).

Delphi does offer some special
features to try to minimise code

size, by supporting code re-use in
a structured way. For example,
event handlers...

Back To The Example
Let’s add some more features to
the example application we started
last time. Drop Rename and Copy
buttons onto the form. Now, if we
double click on the Rename button,
we can write instant code for the
button click event. The same goes
for the Copy button. It would be nice
if we could re-use existing code and
event handlers, and we can! We just
assign the same event handler to
the OnClick event in both buttons.
Of course, we need to change the
event handler to discriminate
between both buttons, as shown in
Listing 2.

Gauge CallBack
Note that the callback routine we
used in the example above is

procedure CallBack(Position, Size: LongInt); export;
var Progress: LongInt;
begin
 Progress := (Position * MainForm.Gauge1.MaxValue) div Size;
 MainForm.Gauge1.Progress := Progress { update Gauge }
end {CallBack};

procedure TMainForm.RenameButtonClick(Sender: TObject);
var
 CallBackProc: TCallBack; { procedure(Position, Size: LongInt); }
 f: File;
 FileName: String;
 Len: Byte absolute FileName;
begin
 if FileListBox1.FileName <> ’’ then begin
 FileNameDialog.OldFileName.Text := FileListBox1.FileName;
 FileNameDialog.NewFileName.Text := FileListBox1.FileName;
 if FileNameDialog.ShowModal <> idCancel then begin
 FileName := FileNameDialog.NewFileName.Text;
 try
 try
{ ==> } if Sender = RenameButton then begin
 System.Assign(f,FileListBox1.FileName);
 System.Rename(f,FileName)
 end else begin
{ ==> } { Sender = CopyButton }
 Gauge1.Progress := 0;
 CallBackProc := CallBack;
 FastFileCopy(FileListBox1.FileName,
 FileNameDialog.NewFileName.Text, CallBackProc)
 { see source code on disk for “callback” details }
 end
 except
 on E: Exception do MessageDlg(E.Message, mtError, [mbOk], 0)
 end;
 finally
 FileListBox1.Directory := ’.’;
 {Force Rescan}
 FileListBox1.Directory := DirectoryOutLine1.Directory;
 { Bug? TFileListBox chokes if the filename ends on a ’.’ }
 if FileName[len] = ’.’ then Dec(len);
 FileListBox1.FileName := FileName
 end
 end
 end
end;

➤ Listing 2

48 The Delphi Magazine Issue 5

connected to the TGauge. As with
TDirectoryOutliner, the Delphi
Gauge component is just a sample
which Borland included. It doesn’t
do any fancy optimisation of
screen refreshes. Indeed, we can
see that without using the Gauge
CallBack routine our application
seems to run much faster. If we
look at the code for the SetProgress
routine in the VCL we see:

fCurValue := Value;
Refresh;

This means that whenever the pro-
gress value is changed the entire
control will be redrawn. There are
a number of ways to make this
faster. One way is to check if the
screen is actually likely to have
changed. For example, instead of
calling Refresh, do the following:

if abs(fCurValue-fLastDrawn) >=
 fDisplayDelta then begin
 Refresh;
 fLastDrawn := fCurValue;
end;

Another approach is to use a timer
and to do a Refresh only, say, 20
times per second if SetProgress was
called and a refresh needs to be
done. Of course, we can combine
the two strategies and come up
with a really fast implementation of
a TGauge, which is left as an exercise
for the reader...

Adding Final Features
Time for the last additions: two
new buttons to UUEncode or
UUDecode the file selected using
the FileListBox. The UUEncode
and UUDecode routines are imple-
mented in a ‘foreign’ DLL (see
Under Construction in Issue 4) and
this section will show how to write
and use DLLs for Delphi efficiently
(again, ‘bottom-up efficiency’).

UUEncode, by the way, is the
process of encoding a file which
may contain any characters
(including high ASCII characters)
into another file which uses a
standard, limited, character set, so
the encoded file can be reliably
sent over many communication
networks, such as the internet. A
nice feature to include!

UUCode DLL
First of all, a DLL is a library of
routines and resources which is
linked into your application at run
time instead of compile time. The
run time linking allows a DLL to be
shared by multiple applications,
thus saving on memory and
resource usage and DLL load time.

Init And Exit
Each DLL has its own Init (loading)
and Exit (unloading) code. Note
that while a DLL can be used by
many applications at the same
time, the Init and Exit are only
executed once, not for each appli-
cation. In Object Pascal, we can

express this as shown in Listing 3
for our UUCode DLL.

As a DLL is shared by a lot of
applications, you can even en-
hance performance by placing
shared code or resources in a DLL.
Since the DLL won’t have to be
loaded by the second application,
this saves on start-up time. Of
course, loading each DLL, espe-
cially if we’ve got more than one
DLL, takes more time than loading
only one standalone EXE file would.

Loading And Unloading
Loading a DLL is usually achieved
by writing an import unit and this
can be done in two ways: either

➤ The example application, now with added features!

library UUCode;

function UUEncode(FileName: PChar): Word; export;
begin
 ...
end {UUEncode};

function UUDecode(FileName: PChar): Word; export;
begin
 ...
end {UUDecode};
var SaveExitProc: pointer;

procedure NewExitProc; far;
begin
 ExitProc := SaveExitProc
end {NewExitProc};
exports UUEncode index 1,
 UUDecode index 2;

begin
 SaveExitProc := ExitProc;
 ExitProc := @NewExitProc
end.

➤ Listing 3

January 1996 The Delphi Magazine 49

automatically (with an implicit
import unit) or by hand using
LoadLibrary (with an explicit import
unit). Implicit import units are very
easy (see Listing 4), but can intro-
duce a few problems when the DLL
is not available, such as an error
message from Windows telling us
that the DLL wasn’t found.

It’s possible to check for a DLL’s
presence before attempting to use
it. You’ll have to change your inter-
face unit by changing all of the pro-
cedure definitions to procedural
variable declarations. By eliminat-
ing all of the external ’UUCode’
index IndexNum; clauses you will
eliminate the implicit reference to
the DLL and the automatic attempt
to load it. To make UUCode.DLL a
DLL that can be conditionally
loaded, the interface unit might
look something like Listing 5.

This second import unit causes
UUCode.DLL to be conditionally
loaded. The variable UUCodePresent
can be tested in the program which
uses this unit, so it calls the DLL
only when UUCodePresent is true.
However, note that this is slightly
slower than implicit loading of the
DLL. Hence, we have a trade-off
between safety and speed!

Unloading the DLL can also be
done either automatically, or by
hand with FreeLibrary.

Using a DLL
The data segment of your DLL is
shared by all calling applications,
and is limited to 64Kb minus the
local heap. A DLL has no stack for
its own, but uses the stack of the
calling application. Therefore,
your DLL should be conservative
about stack space; allocating 8Kb
or so of local variables on the
caller’s stack would be a bit ‘rude’,
and can lead to a GPF real fast. Also,
you might want to arrange the
functions into logical groups and
(using different units) mark the
code segments as loadoncall and
discardable. If they are marked as
preload, Windows will try to drag
them all into memory at start-up,
which may take a long time.

Timing a DLL
We can profile a DLL with Turbo
Profiler (you need the one from

Borland C++ 4.5x) . When you load
a program that uses DLLs into
Profiler, it checks for symbol tables
(as with an EXE file) and automat-
ically loads the symbol table and
source of every linked DLL.

If your DLL is loaded automat-
ically, you can set profile areas
right from the start by picking the
DLL as the Module to view. If the
DLL is loaded by hand with
LoadLibrary, you must set a Stop
area marker right after the
LoadLibrary call, in order to get to
the DLL Module to set the profile
areas. This hack is actually another
reason why I generally prefer
import libraries to automatically
load DLLs instead of using
LoadLibrary. Note that you’ll get a
separate .TFS and .TFA file for each
DLL which is loaded by your
program.

Load Time Efficiency
Splitting your Windows application
into several DLLs to support your
main application may have intro-
duced another problem: load time.

Each DLL will have to be loaded,
whether it’s dynamically or
automatically, and this takes time.
You cannot expect each DLL to be
already loaded by another applica-
tion. The load time of a DLL
depends on two factors: the
number of functions inside the DLL
which have to be imported and
assigned to your import library
functions, and the total code size of
the DLL.

Optimising the individual
functions for speed and size is
something we’ve done before.
Optimising the total DLL code size
seems like something we cannot do
much about, or can we?

unit UUCode;
{ explicit import unit for UUCODE.DLL }
interface
uses Wintypes, Winprocs, Win31;
Const UUCodePresent: Boolean = False;
var
 UUEncode: function(FileName: PChar): Word;
 UUDecode: function(FileName: PChar): Word;

implementation
var
 SaveExitProc: Pointer;
 DLLHandle: Word;

procedure NewExitProc; far;
begin
 if DLLHandle >= 32 then FreeLibrary(DLLHandle);
 ExitProc := SaveExitProc
end {NewExitProc};

begin
 SetErrorMode(SEM_NOOPENFILEERRORBOX);
 DLLHandle := LoadLibrary(’UUCODE.DLL’);
 if DLLHandle >= 32 then begin
 SaveExitProc := ExitProc;
 ExitProc := @NewExitProc;
 @UUEncode := GetProcAddress(DLLHandle,’UUENCODE’);
 @UUDecode := GetProcAddress(DLLHandle,’UUDECODE’);
 UUCodePresent := True; { we can use UUEncode & UUDecode now }
 end
end.

➤ Listing 5

unit UUCode;
{ implicit import unit for UUCODE.DLL }
interface
function UUEncode(FileName: PChar): Word;
function UUDecode(FileName; PChar): Word;
implementation
function UUEncode; external ’UUCODE’ index 1;
function UUDecode; external ’UUCODE’ index 2;
{ supplying the index number increases performance slightly,
 since otherwise the function that is to be dynamically linked
 has to be searched for by name }
end.

➤ Listing 4

50 The Delphi Magazine Issue 5

W8LOSS
If you’ve installed the command-
line tools with your copy of Delphi
you will have a program called
W8LOSS in your DELPHI\BIN direc-
tory. This program is able to shrink
the file size of Windows 3.x New
Executable programs (such as EXE,
DLL, SCR, and others), in order to
speed program loading and
startup.

W8LOSS uses the Windows’
loader support for chaining re-
location records together by
utilising the target address for the
head record as a link to another
offset requiring the identical fixup
value. The chain is terminated by
the occurrence of 0xFFFF in the
segment data at the fixup’s target
offset. This results in executables
and DLLs that are typically 5% to
20% smaller after running W8LOSS,
even files that are not written in
Delphi (such as the foreign

UUCode.DLL, which was actually
written in Borland Pascal).

Conclusions
In these first two articles, I’ve
described various tools and tech-
niques which are available for
Delphi performance optimisation.
We’ve seen a structured perform-
ance optimisation process, where
we (top-down) break down the
application and optimise step by
step. We’ve also seen special
bottom-up optimisation, a feature
introduced by the re-usable
component nature of Delphi!

All the source code for the exam-
ples and units (with the exception
of the source for the UUCode.DLL)
can be found on the free disk with
this issue of The Delphi Magazine.

Next time
Once Delphi 2.0 is released, we’ll
return to the topic of performance

optimisation and focus on the
32-bit programming world, explor-
ing some Delphi 2.0 optimisation
techniques.

Bob Swart (you can email him at
100434.2072@compuserve.com) is
a professional 16- and 32-bit
software developer using Borland
Pascal, C++ and Delphi. In his spare
time, he likes to watch video tapes
of Star Trek Voyager with his 1.75
year old son Erik Mark Pascal.

Acknowledgements
The first two parts of this series are
based on my talk in session DL390
(Delphi Performance Optimisa-
tion) from the 6th Annual Borland
Developers Conference, August
6-9 1995, in San Diego, USA.

January 1996 The Delphi Magazine 51

	Language Enhancements
	Virtual vs Dynamics
	Run Time Type Information
	Open Arrays
	Run Time Type Information
	Exceptions
	Finally
	Assembly
	Code Size
	Back to the Example
	Gauge Callback
	Adding Final Features
	UUcode DLL
	Init and Exit
	Loading and Unloading
	Using a Dll
	Timing a DLL
	Load Time Efficiency
	W&LOSS
	Conclusions
	Next Time

